мне дали над временем власть

Анфиса Третьякова-Федина
ты так долго ждал этот вечер!
ты не задавай вопросов.
я всё расскажу про вечность,
всё расскажу о звёздах.

воздух слеплен морозом,
и я щас вполне серьёзно.

мне надоело быть сдержанной!
в эти тоскливые ночи
крыши домов заснежены,
объятья твои-так нежны

и тело дрожит под одеждой,
и ты мне нравишься.очень.

кто-то рождён убить
того,кто рождён любить,
кто-то рождён любить
того,кто рождён убить.

а я родилась звездой,
хочешь-лети со мной.

красивых ночей так мало!
пусть эта-станет открытьем.
и в нашем романе ,как в фильме,
финал оставим открытым.

окутанные мечтами
давай посидим на крыше.
я расскажу тебе тайну
звезды,что висит всех выше.

неловкой рукой любви
пришитая к небу наспех,
она упадёт не ниже земли,
но упадёт ниже всех.

хочешь-лети со мной...
мне дали над временем власть.
но я родилась звездой-
и мне суждено упасть!

Крым-Россия.

Представьте себе, однажды вы просыпаетесь и понимаете, что живете внутри компьютерной игры. Если это так, тогда все вокруг, весь трехмерный мир - это всего лишь иллюзия, информация, закодированная на двумерной поверхности.
Материальная частица описывается в теории относительности траекторией, называемой мировой линией. Мировая линия состоит из событий. Событие -- это точка, мировая точка, в пространстве-времени. В каждой такой точке априори задан световой конус, состоящий из двух половин: конуса прошлого и конуса будущего. Мировая линия материальной частицы должна всегда находиться внутри конуса.На каждой мировой линии течет собственной время, идут собственные часы.То, что мировая линия должна
находиться всегда внутри светового конуса, и отражает тот факт, что предельная скорость механического перемещения материального тела или электромагнитной волны не превышает скорости света.В специальной теории относительности пространство-время есть четырехмерное евклидово пространство (произведение трехмерного евклидова пространства на прямую времени), а все световые конусы равны и параллельны. В общей теории относительности пространство-время может быть существенно иным. Например, цилиндром (произведением трехмерной сферы-пространства на прямую времени) или произведением четырех окружностей -- четырехмерным тором. Соответствующим образом ведут себя световые конусы.
Ряд поразительных открытий, сделанных в начале 1970-х годов, натолкнули на мысль, что квантовая механика и гравитация тесно связаны с термодинамикой.
В 1974 году Стивен Хокинг из Кембриджского университета в Великобритании показал, что квантовые эффекты в космосе вокруг черной дыры могут привести к выбросу излучения высокой температуры. Другие физики быстро отметили, что это явление является довольно общим. Даже в совершенно пустом пространстве астронавт, испытывающий ускорение, будет ощущать вокруг себя тепло. Эффект слишком мал, чтобы его можно было заметить в случае с космическим кораблем, но само по себе предположение казалось фундаментальным. И если квантовая теория и общая теория относительности правильны (что подтверждается экспериментами), то излучение Хокинга действительно существует.
За этим последовало второе ключевое открытие. В стандартной термодинамике объект может излучать тепло только за счет уменьшения энтропии, меры количества квантовых состояний внутри него. То же самое и с черными дырами; еще до появления доклада Хокинга в 1974 году Джейкоб Бекенштейн (Jacob Bekenstein), который в настоящее время работает в Еврейском университете в Иерусалиме, предположил, что черные дыры обладают энтропией. Но есть разница. В большинстве объектов энтропия пропорциональна числу атомов объекта, а значит и объему. Но энтропия черной дыры пропорциональна площади ее горизонта событий, границы, из которой даже свет не может вырваться. Как будто в этой поверхности закодирована информация о том, что внутри (прям как двумерные голограммы кодируют трехмерное изображение).
В 1995 году Тед Джекобсон (Ted Jacobson), физик из Мэрилендского университета в Колледж-Парке, скомбинировал эти два открытия и предположил, что каждая точка в пространстве находится на крошечном «горизонте черной дыры», который также подчиняется пропорции энтропия-площадь. Даже уравнения Эйнштейна удовлетворяют этому условию (естественно, физик оперировал термодинамическими понятиями, а не пространством-временем).
«Возможно, это позволит нам узнать больше о происхождении гравитации», - говорит Якобсон. Законы термодинамики являются статистическими, поэтому его результат позволяет предположить, что гравитация – явление также статистическое (макроскопическое приближение к невидимым компонентам пространства-времени).
В 2010 году эта идея шагнула еще дальше. Эрик Верлинде (Erik Verlinde), специалист по теории струн из университета Амстердама, предположил, что статистическая термодинамика пространственно-временных составляющих могла дать толчок закону Ньютона о гравитационном притяжении.
В другой работе Тану Падманабан (Thanu Padmanabhan), космолог из Межвузовского центра астрономии и астрофизики в Пуне, показал, что уравнения Эйнштейна можно переписать в форме, идентичной законам термодинамики, как и многие другие альтернативные теории тяжести. В настоящее время Падманабан работает над обобщением термодинамического подхода, пытаясь объяснить происхождение и величину темной энергии, таинственной космической силы, ускоряющей расширение Вселенной.
Подобные идеи проверить эмпирически крайне сложно, но не невозможно. Чтобы понять, состоит ли пространство-время из отдельных компонентов, можно провести наблюдение за задержкой фотонов высоких энергий, путешествующих к Земле от далеких космических объектов, таких как сверхновые и ;-всплески.
Сверхновые - звезды, блеск которых увеличивается на десятки звездных величин за сутки. В течение малого периода времени взрывающаяся сверхновая может быть ярче, чем все звезды ее родной галактики.
Существует два типа cверхновых: Тип I и Тип II. Считается, что Тип II является конечным этапом эволюции одиночной звезды с массой М*=10±3Мsun. Тип I связан, по-видимому, с двойной системой, в которой одна из звезд белый карлик, на который идет аккреция со второй звезды.
Гамма-всплески – выбросы гамма-излучения, связанные с самыми высокоэнергетическими взрывами. Изначальное гамма-излучение испускается в течение времени от десятка миллисекунд до нескольких минут, за ним следует послесвечение на более длинных волнах.
Большая часть гамма-всплесков связана с образованием нейтронных звезд и черных дыр после взрывов сверхновых, самые короткие всплески возникают при столкновении двух нейтронных звезд.